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The Q test is regularly used in meta-analysis to examine variation in effect sizes. 

However, the assumptions of Q are unlikely to be satisfied in practice prompting 

methodological researchers to conduct computer simulation studies examining its 

statistical properties. Narrative summaries of this literature are available but a 

quantitative synthesis of study findings for using the Q test has not appeared. We 

quantitatively synthesized estimated Type I error rates and power values of a 

sample of computer simulation studies of the Q test. The results suggest that Q 

should not be used for standardized mean difference effect sizes like Hedges’ g 

unless the number of studies and primary study sample sizes are at least 40. Use 

of the Fisher’s r-to-z transformed effect size, on the other hand, resulted in Q 

performing well in almost all conditions studied. We summarize our findings in a 

table that provides guidelines for using this important test. 

 

Meta-analysis is widely used in education and psychology to quantitatively synthesize study 

findings for a common topic. A survey of published articles in the journals Psychological 

Bulletin, Journal of Applied Psychology, and the Review of Educational Research from 2000 to 

2014 showed that 349 of 2,505 articles (14%) utilized a meta-analytic technique to synthesize 

study results. In a meta-analysis, the Q test (Hedges, 1981, 1982a, 1982b) is typically used to test 

the homogeneity of effect sizes as well as the impact of moderators. The fact that 47.3% of the 

meta-analyses cited above utilized Q suggests that when a meta-analysis is done the Q test is 

frequently used. 

 

To test the variability among K (k = 1, …, K) independent effect sizes (ES) using Q requires 

meta-analysts to choose a fixed effect or random effects model (we assume one ES per study but 

in practice multiple ESs are possible). Borenstein, Hedges, Higgins, and Rothstein (2009) argued 

the choice should be driven by whether we assume there is one true effect that every available 

ES is estimating in which case all ESs share a common population mean (fixed effect), or 

whether ESs are assumed to vary across studies implying they represent a random sample from a 

distribution of ESs (random effects). In practice the random effects model is frequently easier to 

justify (Borenstein et al., 2009). 

 

To delineate the underlying model for ESs it’s useful to employ a two-level hierarchical (random 

effects) model in which level 1 (within-study) has the form 𝜃𝑘 = 𝜃𝑘 + 𝑒𝑘,   𝑒𝑘 ~𝑁(0, 𝜎𝑘
2) where 

𝜃𝑘is an estimated ES (e.g., standardized mean difference) assumed to follow a normal 

distribution with mean 𝜃𝑘and variance 𝜎𝑘
2, and 𝑒𝑘 represents error. At level 2 (between-studies) 

the unconditional (no predictors) model is simply 𝜃𝑘 =  𝜃 + 𝑢𝑘 , 𝑢𝑘~𝑁(0, 𝜏) where 𝜃 is the 

mean effect size (mean of the 𝜃𝑘) and 𝑢𝑘 is a level 2 random effect representing the difference 
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between the 𝜃 and the 𝜃𝑘 that is assumed to be normally-distributed with variance 𝜏 

(Raudenbush & Bryk, 2002). If predictors representing study features like sample size or the year 

a study appeared are used then the level 2 model is conditional on those predictors. Substituting 

the level 2 expression into the level 1 expression produces the composite random effects 

unconditional model 𝜃𝑘 = 𝜃𝑘 + 𝑢𝑘 + 𝑒𝑘where 𝜃𝑘~𝑁(𝜃, 𝜏 + 𝜎𝑘
2). If 𝜏 = 0, this is a fixed effect 

model. 

 

To test the hypothesis of homogeneity of ESs, Ho: 𝜏 = 0 (random effects) or, equivalently, 

Ho: All 𝜃𝑘 = 𝜃 (fixed effect) (Raudenbush, 2009), the Q test (Hedges, 1982a, 1982b) is used:   
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In equation (1) 𝜃̂̅ is an estimated grand mean, 𝜎̂𝜃̂𝑘

2 =  𝜏̂ + 𝜎̂𝑘
2 represents the variance of 𝜃𝑘whose 

precise form depends on the nature of the ES, and 𝑤𝑘 is a weight defined as [ 𝜏̂ + 𝜎̂𝑘
2]−1 . The Q 

test is approximately distributed as a chi-square variable with degrees of freedom of K-1 

assuming Ho is true. Retention of Ho: 𝜏 = 0 implies that all ESs estimate a common mean, 

whereas rejection of Ho usually triggers additional analyses to identify moderators that account 

for variation among ESs meaning that the level 2 model now contains predictors. The Q test is 

also used to compute the percentage of total variation in ESs due to between-study variance that 

is potentially explainable (𝐼2) (Higgins & Thompson, 2002) and to estimate 𝜏 (Konstantopoulos 

& Hedges, 2004). 

 

Although 𝜃 can represent several kinds of ESs for continuous outcomes, two frequently used 

indices are the standardized mean difference for two independent groups and the transformed 

(normalized) Pearson’s correlation coefficient (McGrath & Meyer, 2006). The standardized 

mean difference and its variance are estimated as 

within
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where  𝑌̅1𝑘 and 𝑌̅2𝑘 are sample means obtained from two independent groups for the kth study 

and 𝑆𝑤𝑖𝑡ℎ𝑖𝑛 is a standardizer that traditionally has been a pooled within-groups standard deviation 

(Borenstein, 2009). Hedges (1981) modified 𝜃𝑘to provide an (approximately) unbiased estimator 

for the standardized mean difference often called Hedges’ g:     

𝜃𝑔𝑘 = 𝜃𝑘 (1 −
3

𝑛1+𝑛2−2
), 
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Pearson’s correlations (𝑟𝑘) also serve as ESs and are often transformed (normalized) using the 

Fisher’s r-to-z transformation:  

𝜃𝑧𝑘
=

1

2
𝑙𝑛 [

1+𝑟𝑘

1−𝑟𝑘
] , 𝜎̂𝜃̂𝑧𝑘
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1

𝑛𝑘−3
 . (4) 

(Borenstein, 2009). The use of 𝜃𝑧𝑘
 has been criticized on statistical grounds (e.g., Hunter & 

Schmidt, 2004) and some meta-analyses simply use 𝑟𝑘 as an ES:      

𝜃𝑟𝑘
= 𝑟𝑘,  𝜎̂𝜃̂𝑟𝑘

2 = [
(1−𝑟𝑘

2)
2

𝑛𝑘−1
]. (5) 

 (Borenstein, 2009). The 𝜃 values in equations (3), (4), and (5) and their variances are used in the 

Q test in equation (1). 
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Strictly speaking, valid inferences using the Q test are most likely when its underlying 

assumptions are satisfied. These assumption include: (a) ESs are independent, (b) 𝑒𝑘 and 𝑢𝑘are 

normally-distributed, (c) observations within primary studies are independent, normally-

distributed, and homoscedastic, and (d) sample sizes are large enough to justify the chi-square 

approximation (Hedges & Olkin, 1985). In practice, it is likely that one or more of the 

assumptions underlying Q will be violated (see Greenhouse & Iyengar, 2009; Micceri, 1989), 

raising questions about the impact of violations of assumptions on the statistical behavior of Q. 

In response, methodological researchers have used computer simulation studies to investigate the 

Type I error rate and statistical power of the Q test and to identify data conditions for which 

inferences based on Q are expected to be correct (e.g., Huedo-Medina, Sánchez-Meca, Marín-

Martínez, & Botella, 2006). A Type I error represents the probability of incorrectly rejecting 

Ho: 𝜏 = 0 whereas power is the probability of correctly rejecting Ho: 𝜏 = 0. These studies 

typically simulate data reflecting realistic data conditions like small numbers of studies and non-

normal data and use these data to investigate the Type I error rate and power of Q. The goal is to 

identify data conditions in which Q controls its Type I error rate at a nominal value like 𝛼 = 0.5 

and demonstrates adequate statistical power to detect heterogeneity among ESs (e.g., .85). 

 

Review of the Computer Simulation Literature for Q 

Homogeneous effect sizes: Type I error rate of the Q test. Several simulation studies have 

provided evidence that Q does not control its Type I error rate at  = .05 even for normally- 

distributed and homoscedastic data, and within-study sample sizes ( kN ) of at least 40 and K   

30 (e.g., Aaron, 2003; Harwell, 1997; Sánchez-Meca & Marín-Martínez, 1997); estimated Type I 

error rates (̂ ) under these conditions sometimes differed noticeably from .05 (e.g., 02, .12). On 

the other hand, Hedges (1982b) found that Q showed good control of Type I error rates when 

data were normally-distributed and homoscedastic even for K = 5. Unequal within-study sample 

sizes and normally-distributed data tend to produce somewhat conservative ̂  rates (e.g., .03). 

Inflated̂  rates (e.g., .07) have often appeared for Q when smaller (unequal) within-study 

variances were paired with larger (unequal) within-study sample sizes even for normally-

distributed data (Cornwell, 1993; Harwell, 1997), a well-documented pattern in primary studies 

(Box, 1954). For non-normal and heteroscedastic primary study data ̂  is frequently 

conservative especially for smaller values of K but there is evidence that it moves toward .05 for

kN  40 and K 40. Sackett, Harris, and Orr (1986) and Cornwell (1993) also found that 𝛼̂ was 

insensitive to measurement error, but Sagie and Koslowsky (1993) reported that measurement 

error produced inflated 𝛼̂ values. 

 

Heterogeneous effect sizes: The power of the Q test. As expected, the power of the Q test 

increases as heterogeneity of ESs across studies increases for a fixed value of K (Aaron, 2003; 

Hardy & Thompson, 1998; Harwell, 1997; Schulze, 2004). There is also agreement that in 

maximizing the power of the Q test larger values of K are typically more important than larger 

values of kN  (Schulze, 2004) regardless of the type of ES. However, larger values of K do not 

guarantee high power and in practice the power of Q depends on a complicated mix of factors 

including K, 𝑁𝑘, heterogeneity of ESs, noncentrality patterns of ESs, as well as the assumptions 

of normality and homoscedasticity within primary studies (Chang, 1993). The power of Q also 
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appears to decrease when the reliability of the variables decreases (Cornwell, 1993; Sackett et al., 

1986). 

 

Collectively, these simulation studies provide information about the behavior of Q under various 

data conditions and, to this point, their findings have been summarized qualitatively as part of a 

literature review in a computer simulation study or in characterizations of study findings. For 

example, Huedo-Medina et al. (2006) qualitatively summarized the results of several Monte 

Carlo studies of Q by commenting that “A shortcoming of the Q statistic is that it has poor power 

to detect true heterogeneity among studies when the meta-analysis includes a small number of 

studies and excessive power to detect negligible variability with a high number of studies” (p. 

194). Similarly, Higgins, Thompson, Deeks, and Altman (2003) commented about Q that “The 

test is known to be poor at detecting true heterogeneity among studies as significant. Meta-

analyses often include small numbers of studies, and the power of the test in such circumstances 

is low” (p. 557; see also Aaron, 2003; Harwell, 1997; Chang, 1993). In short, the primary point 

of agreement among qualitative summaries of simulation results seems to be that the power of Q 

is adversely affected by small numbers of studies; a consensus of the impact of assumption 

violations like non-normality and within-study heteroscedasticity has not been reached in 

qualitative summaries. 

 

Qualitative summaries are helpful but can be problematic for at least three reasons. One is that 

the volume of findings can create significant challenges because a single computer simulation 

study can produce dozens and sometimes hundreds of findings, making a qualitative synthesis 

difficult for a sample of these studies. Second, the specific impact of conditions like numbers of 

studies (e.g., K = 10 versus 20) is usually difficult to quantitatively characterize in a qualitative 

review. Third, mixed and contradictory nature of simulation findings complicates attempts to 

qualitatively synthesize information accurately. Thus, the Sutton and Higgins’ (2008) comment 

that “Simulation studies of the properties of tests for heterogeneity are plentiful, yet no overview 

of their findings seems to have been produced” (p. 628) still holds. Below we report a 

quantitative synthesis of a sample of computer simulation studies to provide guidelines for using 

Q for realistic data conditions that simultaneously address many of the difficulties of qualitative 

reviews and increases the likelihood of this test being appropriately used. 

 

Meta-Analysis of Computer Simulation Results for the Q Test 

 

Several researchers have used meta-analytic methods to summarize the results of computer 

simulation studies of a statistical test (e.g., Hoogland & Boomsma, 1998; Newman, Hall, & 

Fraase, 2003; Powell & Schafer, 2001). In this method, outcomes of simulation studies such as̂  

and 1- ̂  (power) serve as ESs and study features such as number of studies as independent 

variables. This approach shares many of the advantages of meta-analysis over qualitative 

literature summaries, including the use of systematic methods to aggregate study findings, 

incorporating how sampling of individual studies was done into the modeling, and assessing the 

role of moderating variables (DeCoster, 2005). The result is that valid inferences about the 

impact of various conditions on the statistical behavior of the Q test can be made based on a 

quantitative summary of simulation results. 
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We used a meta-analytic method to summarize simulation results for the Q test to identify data 

conditions for which inferences based on Q are appropriate. Our goal was to quantitatively 

synthesize ̂  and 1 − 𝛽̂ values for Q for a sample of computer simulation studies and to use our 

findings to provide guidelines for using the Q test. These guidelines should increase the 

likelihood that inferences based on Q will be correct. 

 

Methodology 

 

Sampling of Studies 

 

The population consisted of computer simulation studies in which the Type I error and/or power 

of the Q test was investigated. Studies fitting this description were included in the meta-analysis 

regardless of the research domain in which they appeared. Scholarly works were identified using 

the Educational Resources Information Center (ERIC) database, Dissertation Abstracts 

International, reference lists of obtained studies, and Google Scholar. Examples of keywords 

used for identifying studies were: Hedges, Q test, heterogeneity, homogeneity, independence, 

effect size(s), meta-analysis, simulation, Type I error, power, and Monte Carlo. Reference lists of 

the identified studies were also examined. Through this process, we initially identified a sample 

of 21 studies of the Q test. However, a study by Hardy and Thompson (1998) was excluded 

because these authors did not report values for Type I error or power, and Viechtbauer (2007) 

was excluded because ̂  and 1 − 𝛽̂ values for Q were reported using graphical displays and 

could not be accurately retrieved. Finally, a study by Takkochue, Cadarso-Suárez, and 

Spiegeiman (1999) was removed because it used odds ratios as ESs. As a result, eighteen studies 

met the inclusion criteria for quantitative synthesis and included a book chapter, 13 published 

journal articles, two unpublished conference or technical papers, and two dissertations. Effect 

sizes for the 18 studies included standardized mean differences and transformed and 

untransformed correlation coefficients. The sample of 18 studies produced 1,872 ̂  values and 

3,087 1 − 𝛽̂ values for the Q test. These values can be treated as independent even if they were 

generated within the same simulation study because the simulated data values are independent 

based on conventional statistical methods to assess independence like serial correlation (Ripley, 

1987). In 12 of the 18 studies, only normally-distributed data were simulated and only three 

studies modeled non-normal 𝜃𝑘. 

 

Coding of Studies 

 

Coded study features included estimated Type I error rates (𝛼̂𝑘) and power values  

(1 − 𝛽̂𝑘), the number of studies simulated (K), within-study sample size (𝑁𝑘) for each simulated 

study, within-study variances (equal, unequal), distribution of the simulated primary study data 

or ES distribution where available, between-study parameter variance (𝜏) for power, 

measurement error, and range restrictions. In all studies 𝛼 =.05. 

 

Coding of studies was mainly done by the first author. The accuracy of the coded values was 

checked by coding all studies twice about three months apart and performing descriptive 

analyses of the coded values to identify unusual values. Few discrepancies emerged between the 

two rounds of coding. When a discrepancy was observed the coded value was compared with the 

information reported in the original simulation study. Any remaining ambiguity of coding was 



  Q TEST IN META-ANALYSIS 

 

Mid-Western Educational Researcher • Volume 28, Issue 1 

 

60 

resolved by consensus among the authors, helping to ensure that study features and ESs were 

accurately coded. 

 

Data Analysis 

 

We examined patterns in the ESs (𝛼̂𝑘,1 − 𝛽̂𝑘) and their relation to study features using plots and 

descriptive statistics. The non-normal distributions of 𝛼̂𝑘 and 1 − 𝛽̂𝑘 led us to transform these 

values using the arcsine transformation and to use the transformed values in our analyses. 

Proportions possess several statistical shortcomings including means and variances that are 

dependent and a distribution that is not necessarily well approximated by a normal distribution 

for small sample sizes. The arcsine transformation is a linearizing transformation to a scale in 

which the mean and variance of the transformed statistic are independent and approximately 

normally-distributed for the full range of transformed values even for small samples (Cox, 1970). 

The transformed and untransformed values (e.g., 𝛼̂𝑘, and 𝛼′̂𝑘) share a monotonic relationship. In 

our analyses, the transformed values (𝛼′̂𝑘,[1 − 𝛽̂𝑘]′) served as outcome variables and were 

analyzed separately for each kind of ES modeled in the sample of Monte Carlo studies (i.e., 𝜃𝑔𝑘
, 

𝜃𝑧𝑘
, 𝜃𝑟𝑘

). The transformed values (𝛼′̂𝑘,[1 − 𝛽̂𝑘]′) were transformed back to the original metric 

(𝛼̂𝑘, 1 − 𝛽̂𝑘) for reporting the results.  

 

Variables used for the analysis were: (a) 𝑁𝑘 based on four categories suggested by values coded 

for the studies (0 = Less than 30, 1 = 30 to less than 50, 2 = 50 to less than 100, and 3 =  100 or 

more), (b) K based on four categories suggested by values coded for the studies (0 = Less than 

10, 1 = 10 to less than 30, 2 = 30 to less than 50, 3 = 50 or more), (c) normality of primary study 

distributions (1 = normally-distributed, 0 = Not normally-distributed) (d) heterogeneity of 

within-study variances for two groups (1 = yes, 0 = no), measurement error (1 = reliabilities of 

variables (X, Y) for computing 𝜃𝑘 in primary studies is less than 1, 0 = reliabilities are 1), and 

range restriction (1 = yes, 0 = no). The range restriction was operationalized differently among 

studies. For example, Cornwell (1993) restricted the range of one variable used for computing 

𝜃𝑘, while Sagie and Koslowsky (1993) manipulated the ratio of sample to population SD. We 

also modeled between-study variance (𝜏) using quartiles suggested by the coded values (0 = 

Less than 0.01, 1 = 0.01 to less than 0.025, 2 = 0.025 to less than 0.067, and 3 = 0.067 and 

more). More specific coding of simulation factors and assumption violations was not possible 

because of a lack of variation. For example, most conditions in the sample of studies involved 

normally-distributed data, which limited the investigation of non-normal primary study data on 

𝛼′̂𝑘 and (1 − 𝛽̂𝑘)′. 
 

Although we intended to code within-study sample sizes we found that most studies simulated 

unequal within-study sample sizes that varied across values of K. For example, Field (2001) 

used four levels of N  (𝑁̅ = 20, 40, 80, or 160) for a given K, which presumably resulted in most 

within-study sample sizes being unequal, but it’s impossible to know for certain because only 

average within-study sample sizes were reported. Also, none of the simulation studies simulated 

non-normal 𝑢𝑘 for random effect models. The summary of simulation conditions and findings of 

each study is available from the first author upon request.   
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Results 

 

The value of K modeled in the simulation studies ranged from 2 to 256 with 12 of the 18 studies 

simulating K being equal to or less than 50. There was also considerable variation in 𝑁𝑘 that 

ranged from 7 to 5,000. Similarly, researchers employed a variety of  𝜏 values, which ranged 

from 0 (i.e., homogeneous effect sizes) to 1 with the median of 0.025. Perhaps the most striking 

finding in this literature is lack of investigation of the effect of combinations of realistic data 

conditions on the Type I error rate and power of Q. For example, as previously mentioned, three 

out of 18 studies used primary study data that are non-normal. Only one study (i.e., Cornwell, 

1993) combined a non-normal primary study data distribution with a range restriction for small 

numbers of studies; and only a few Monte Carlo studies of Q (Cornwell, 1993; Sackett, Harris, 

& Orr, 1986; Sagie & Koslowsky, 1993) have examined the impact of range restrictions or 

measurement error which preliminary evidence suggests have a significant impact on the power 

of the Q test.  

 

Table 1 reports average 𝛼̂ values for Q as a function of K, 𝑁𝑘, and whether underlying 

assumptions were satisfied versus at least one assumption was violated (i.e., non-normal 

distributions, within-study variance heterogeneity, measurement error, range restriction) for each 

type of ES. Under the condition of no assumption violation 𝛼̂ for 𝜃𝑔𝑘
tended to be conservative 

across all levels of K and 𝑁𝑘, ranging from 0.016 to 0.046. While Q maintained its Type I error 

rate at 0.05 for 𝜃𝑧𝑘
 with no assumption violations 𝛼̂ was always inflated unless  𝑁𝑘 is larger than 

100 when using untransformed Pearson’s correlations 𝜃𝑟𝑘
. When at least one underlying 

assumption was violated 𝛼̂ for 𝜃𝑔𝑘
 was near 𝛼 = .05 whereas for 𝜃𝑍𝑘

the reported 𝛼̂ once again 

was near .05 even for small 𝑁𝑘 and K, while 𝜃𝑟𝑘
 produced estimated error rates that tended to be 

inflated. 
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Table 1  

Average estimated Type I error rates as a function of simulation factors across studies  
   Violation 

   No 

 

Yes 

ES 

type 

  

  

95%CI 

   

95%CI 

Study feature  J M LLM ULM 

 

J M LLM ULM 

𝜃𝑔 K  Less than 10 91 0.039 0.039 0.040 

 

114 0.054 0.053 0.054 

  10 to less than 30 74 0.032 0.032 0.032 

 

267 0.049 0.049 0.050 

  30 to less than 50 25 0.042 0.041 0.043 

 

267 0.053 0.052 0.053 

  50 or more 15 0.016 0.016 0.017 

 

-- -- -- -- 

𝜃𝑍  Less than 10 52 0.050 0.050 0.052  14 0.050 0.047 0.054 

  10 to less than 30 142 0.051 0.051 0.051  28 0.050 0.048 0.053 

  30 to less than 50 40 0.051 0.050 0.051  -- -- -- -- 

  50 or more 47 0.049 0.048 0.050  -- -- -- -- 

𝜃𝑟  Less than 10 29 0.079 0.078 0.081  43 0.053 0.051 0.056 

  10 to less than 30 52 0.059 0.058 0.060  22 0.059 0.056 0.062 

  30 to less than 50 17 0.062 0.058 0.066  21 0.059 0.056 0.062 

  50 or more 41 0.077 0.076 0.078  44 0.070 0.068 0.073 

𝜃𝑔 𝑁𝑘 Less than 30 67 0.024 0.024 0.024  277 0.046 0.045 0.046 

  30 to less than 50 53 0.032 0.031 0.032  178 0.056 0.056 0.057 

  50 to less than 100 36 0.041 0.040 0.041  8 0.047 0.044 0.051 

  100 or more  49 0.046 0.045 0.046  185 0.056 0.056 0.057 

𝜃𝑍  Less than 30 37 0.052 0.051 0.052  42 0.050 0.048 0.052 

  30 to less than 50 68 0.051 0.051 0.051  -- -- -- -- 

  50 to less than 100 73 0.051 0.050 0.051  -- -- -- -- 

  100 or more 103 0.050 0.050 0.050  -- -- -- -- 

𝜃𝑟  Less than 30 -- -- -- --  -- -- -- -- 

  30 to less than 50 35 0.083 0.082 0.084 

 

4 0.087 0.052 0.130 

  50 to less than 100 46 0.077 0.076 0.078 

 

42 0.056 0.054 0.059 

  100 or more 58 0.055 0.054 0.056 

 

84 0.063 0.061 0.065 

Note: 𝜃̂𝑔= standardized mean difference, 𝜃̂𝑧= Fisher r-to-z transformed correlation, 𝜃̂𝑟= untransformed Pearson 

correlation, K = the number of effect sizes for a study, J = the number of effect sizes for the meta-analysis;  

M = weighted mean, LLM = 95% lower limit for M, and ULM = 95% upper limit for M. Violation = yes includes non-

normal distributions, within-study variance heterogeneity, range restriction, or measurement error. -- means results 

could not be produced because of no data or lack of variation. 

 

Table 2 reports power for Q as a function of K, 𝑁𝑘, and between-study variance 𝜏 by type of ES. 

We note that interpreting power when the corresponding Type I error rate is inflated or 

conservative must be done cautiously. The power of Q for 𝜃𝑔𝑘
ranged from 0.220 to 0.819 for no 

assumption violations and generally increased as K, 𝑁𝑘, or 𝜏 increased except for  𝑁𝑘  between 

30 and 50 or 𝜏 between 0.01 and 0.025. The power associated with 𝜃𝑍𝑘
was quite large when no 

violation existed except 𝜏 less than 0.01, ranging from 0.453 to 0.998. The power of Q associated 

with 𝜃𝑟𝑘
for the no violation case ranged from 0.189 to .870 and increased with increases in K, 

𝑁𝑘, or 𝜏 but didn’t exceed .70 unless K is larger than 50 and 𝑁𝑘 is larger than 100. For the 
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assumption violated conditions 𝜃𝑧𝑘
 appeared to produce a Q test that was less sensitive than its 

competitors, although this inference is based on a relatively modest amount of data. 

 

Table 2 

Average estimated power values as a function of simulation factors across studies 
  

 

Violation 

   No  Yes 

ES 

type 

 

 
  

95%CI 
   

95%CI 

Study feature J M LLM ULM  J M LLM ULM 

𝜃𝑔 K Less than 10 145 0.345 0.344 0.346   112 0.362 0.361 0.363 

  10 to less than 30 166 0.540 0.539 0.540  120 0.445 0.444 0.447 

  30 to less than 50 124 0.647 0.645 0.648  123 0.562 0.561 0.564 

  50 or more 52 0.819 0.819 0.820  7 0.703 0.698 0.708 

𝜃𝑍  Less than 10 130 0.910 0.910 0.911 
 

14 0.723 0.716 0.730 

  10 to less than 30 264 0.998 0.998 0.998 
 

28 0.910 0.907 0.910 

  30 to less than 50 115 0.998 0.998 0.999 
 

-- -- -- -- 

  50 or more 115 0.911 0.91 0.912 
 

-- -- -- -- 

𝜃𝑟  Less than 10 58 0.447 0.445 0.450 
 

127 0.350 0.348 0.353 

  10 to less than 30 98 0.526 0.522 0.529 
 

64 0.537 0.533 0.541 

  30 to less than 50 46 0.733 0.729 0.737 
 

63 0.673 0.669 0.676 

  50 or more 43 0.870 0.866 0.874   128 0.841 0.839 0.843 

𝜃𝑔 𝑁𝑘 Less than 30 164 0.717 0.716 0.718   184 0.216 0.215 0.217 

  30 to less than 50 40 0.374 0.373 0.374  59 0.517 0.516 0.519 

  50 to less than 100 126 0.558 0.557 0.558  28 0.397 0.393 0.401 

  100 or more  157 0.741 0.74 0.743  91 0.933 0.932 0.933 

𝜃𝑍  Less than 30 109 0.960 0.960 0.960  42 0.857 0.854 0.860 

  30 to less than 50 115 0.993 0.993 0.993 
 

-- -- -- -- 

  50 to less than 100 125 0.997 0.997 0.997 
 

-- -- -- -- 

  100 or more  275 0.998 0.998 0.998 
 

-- -- -- -- 

𝜃𝑟  Less than 30 3 0.473 0.469 0.477 
 

-- -- -- -- 

  30 to less than 50 46 0.314 0.310 0.318 
 

4 0.805 0.748 0.857 

  50 to less than 100 74 0.559 0.555 0.562 
 

126 0.379 0.376 0.381 

  100 or more  122 0.754 0.751 0.757   252 0.718 0.717 0.720 

𝜃𝑔 𝜏 Less than 0.01 110 0.408 0.406 0.409   21 0.103 0.101 0.105 

  0.01 to less than 0.025 60 0.220 0.269 0.270  12 0.468 0.462 0.474 

  0.025 to less than 0.067 126 0.505 0.504 0.506  54 0.384 0.382 0.387 

  0.067 or more  191 0.746 0.746 0.747  275 0.496 0.495 0.497 

𝜃𝑍  Less than 0.01 171 0.453 0.452 0.455 
 

-- -- -- -- 

  0.01 to less than 0.025 191 0.763 0.762 0.764 
 

24 0.731 0.725 0.736 

  0.025 to less than 0.067 223 0.996 0.996 0.996 
 

18 0.969 0.966 0.971 

  0.067 or more  39 0.982 0.981 0.982 
 

-- -- -- -- 

𝜃𝑟  Less than 0.01 89 0.189 0.187 0.192 
 

126 0.224 0.221 0.226 

  0.01 to less than 0.025 124 0.686 0.684 0.689 
 

252 0.791 0.790 0.793 

  0.025 to less than 0.067 7 0.669 0.663 0.675 
 

-- -- -- -- 

  0.067 or more  25 0.870 0.866 0.874   -- -- -- -- 

Note: 𝜃̂𝑔 = standardized mean difference,  𝜃̂𝑧 = Fisher’s transformed correlation, 𝜃̂𝑟= untransformed Pearson 

correlation, K = the number of effect sizes for a study, J = the number of effect sizes for the meta-analysis,   

M = weighted mean, LLM = 95% lower limit for M, and ULM = 95% upper limit for M. -- means results could not be 

produced because of no data or lack of variation. 
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We further explored patterns in 𝛼̂ and 1 − 𝛽̂  by specific assumption violations for each type of 

ES and report these descriptive results in Table 3. Because of a relative paucity of simulation 

work with conditions where data assumptions were violated, a consistent pattern of the impact of 

assumption violations on power was hard to discern. However, 𝜃𝑍𝑘
again outperformed 𝜃𝑔𝑘

 for 

normal and non-normal distributions for Type I error and power, and offered better control of 

Type I error rates than 𝜃𝑟𝑘
 in the presence of measurement error or a range restriction. 

Heterogeneity of variance was also associated with a substantial decrease in power for 𝜃𝑔𝑘
. The 

presence of a range restriction produced an inflated ̂  for 𝜃𝑟𝑘 but not 𝜃𝑍𝑘
, and decreased the 

power of Q for the latter. 

 

Table 3 

Average estimated Type I error rates and power values as a function of specific assumption 

violations in the simulation 
  Type I  Power 

Violation 

   95% CI   95% CI 

ES J M LLM ULM  J M LLM ULM 

Distribution  Normal 𝜃𝑔 236 0.057 0.056 0.057   243 0.623 0.622 0.624 

  𝜃𝑧 110 0.049 0.049 0.050  153 0.759 0.758 0.760 

 Non-normal 𝜃𝑔 468 0.050 0.050 0.051  218 0.534 0.533 0.535 

  𝜃𝑧 18 0.050 0.047 0.053   18 0.813 0.808 0.819 

Within-study 

variances 

Equal 𝜃𝑔 199 0.049 0.048 0.049  215 0.523 0.522 0.524 

Unequal 𝜃𝑔 504 0.053 0.053 0.053  176 0.338 0.337 0.339 

RR No 𝜃𝑧 299 0.051 0.051 0.051  642 0.990 0.990 0.990 

  𝜃𝑟 265 0.069 0.068 0.070  623 0.589 0.588 0.591 

 Yes 𝜃𝑧 24 0.049 0.046 0.051  24 0.731 0.725 0.736 

  𝜃𝑟 4 0.087 0.052 0.130  4 0.805 0.748 0.857 

ME No 𝜃𝑧 300 0.051 0.051 0.051  642 0.990 0.990 0.990 

   𝜃𝑟 139 0.071 0.070 0.071   245 0.564 0.562 0.566 

 Yes  𝜃𝑧 23 0.051 0.048 0.054   24 0.728 0.722 0.734 

  𝜃𝑟 130 0.061 0.059 0.062  382 0.609 0.607 0.611 

Note: RR = range restriction, ME = measurement error, K = the number of cases for a study, 𝜃̂𝑔= standardized mean 

difference, 𝜃̂𝑧 = Fisher’s transformed correlation, 𝜃̂𝑟 = untransformed Pearson correlation, J = the number of effect 

sizes for the meta-analysis M = weighted mean, LLM = 95% lower limit for M, and ULM = 95% upper limit for M.  
 

Discussion 

 

Testing the homogeneity of effect sizes with Hedges’ (1982b) Q test remains a common practice 

in meta-analysis. In using Q it is important to identify the data conditions for which this test is 

appropriately applied, i.e. controls its Type I error rates at nominal values and produces adequate 

power to detect heterogeneity among effect sizes. This requires understanding the impact of 

violating underlying assumptions such as normality, homoscedasticity, and no measurement 

error or range restriction, as well as the conditions under which the large sample approximation 

of Q is justified. 
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Computer simulation studies have been used to identify which (if any) assumption violations 

affect the Type I error rate and power of Q, as well as conditions for which the large sample 

approximation is justified. As Sutton and Higgins (2008) noted a summary of this literature is 

needed to help ensure that Q is used when inferences based on this test are valid. The simulation 

literature for the Q test contains qualitative summaries but not a quantitative summary that can 

provide guidelines to meta-analysts for appropriately using Q. Our study adds to the meta-

analytic literature of Q by quantitatively synthesizing a sample of simulation studies of this test. 

This approach draws on the many strengths of this methodology and our findings (summarized in 

Table 4) provide guidelines for using the Q test 

 

Two key findings emerged. First, the Q test based on Fisher’s r-to-z transformation (𝜃𝑧) overall 

showed excellent control of Type I error rates and strong power for the conditions modeled that 

were clearly superior to those linked to standardized mean differences (𝜃𝑔) and untransformed 

correlation effect sizes (𝜃𝑟). For example, Table 4 shows that the Type I error rate of Q stayed 

near the nominal level for 𝜃𝑧 regardless of whether assumptions were satisfied even for small 

numbers of studies (K < 10) and small study sample sizes (𝑁𝑘< 10), and was insensitive to non-

normal data. Q also generally showed excellent power (1 − 𝛽= .91) for normally-distributed and 

homoscedastic data for small numbers of studies (K < 10) and small study sample sizes ( 𝑁𝑘< 30) 

for 𝜃𝑧. 

 

There were instances in which 𝜃𝑔 was associated with good control of Type I error rates and 

good power for Q, but there simply were not as many as for 𝜃𝑧. In general, the most negative 

effects on Q with 𝜃𝑔 appeared for smaller numbers of studies and smaller study sample sizes. For 

example, with distributional assumptions (i.e., normality, homoscedasticity) satisfied and the 

number of studies less than 10 the Type I error rate of Q was .039 ( ) and power was .345, 

both of which fell short of those linked to 𝜃𝑧 for the same conditions (.050 and .910). Unequal 

within-study variances had little effect on the Type I error rate for 𝜃𝑔but were associated with 

less power. Of course, for power it’s possible that studies using 𝜃𝑔consistently modeled less 

effect size variability than those that studied 𝜃𝑧 which, other things being equal, would produce 

smaller power values for the former. It is difficult to ignore the almost uniformly superior 

performance of Q for 𝜃𝑧. The Q test based on 𝜃𝑧 can also be used with fewer 10 studies and 

primary study sample sizes of 30 or less and still show excellent power for detecting 

heterogeneity unless the data show range restriction. 

 

Our results also suggest that untransformed correlations (𝜃𝑟) not be used with Q because of 

frequent inflation of Type I error rates for a range of conditions. This finding adds to the 

literature of the ongoing debate on 𝜃𝑟versus 𝜃𝑧 (Field, 2001; Hafdahl, 2010).   

 

A second key finding present in Table 4 is the sparseness of the simulation literature for Q. 

While the sample of Type I error and power values generated in simulation studies is large the 

effect of combinations of conditions on Q is still unclear. For example, there has been little work 

done of the impact of primary study data that are non-normal and heteroscedastic and show 

measurement error. Still, the results in Table 4 provide guidelines for correctly using Q and thus 

increase the likelihood of valid inferences based on this test. 

.05 
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Table 4 

Guidelines for Using the Q Test (= .05) 

 Effect on    Effect on 1  

Factor  𝜃𝑔 𝜃𝑧 𝜃𝑟  𝜃𝑔 𝜃𝑧 𝜃𝑟 

 Outcomes within 

primary studies:  

normally-distributed, 

equal variances1 
 ESs: normal   

Somewhat 

conservative  

( ˆ .04 ) even 

for K   50 and 

kN  100 

Minimal even 

for K < 10 and 

kN < 10 

 Inflated    

ˆ( .079)

unless kN > 

100 

 Good power for 

K   50 (e.g., 

1= .82) 

Excellent 

power  

(1= .91) 

even for K < 10 

and kN < 30 

Moderate 

power 

(1= .73) 

unless K   50 

 Outcomes within 

primary studies:  

normally-distributed, 

unequal variances2 
 ESs: normal    

Minimal 

(role of K and

kN for unequal 

variances 

unclear) 

Limited or no 

data 

Limited or no 

data 

 Low power 

(< .34) 

No data No data 

  Outcomes within 

primary studies:  non-

normal, equal variances 

 ESs: normal    

Minimal even 

for K < 10 and

kN < 10 (small 

number of non-

normal primary 

study  

distributions  

studied) 

Minimal even 

for K < 10 and

kN < 10 (small 

number of non-

normal primary 

study  

distributions  

studied) 

Limited or no 

data 

 Minimal (small 

number of non-

normal primary 

study  

distributions  

studied) 

Good power  

(1= .81) 

(small number 

of non-normal 

primary study  

distributions  

studied) 

No data 

 Outcomes within 

primary studies:  non-

normal, un equal 

variances 

 ESs: normal    

Limited or no 

data 

Limited or no 

data 

Limited or no 

data 

 Limited or no 

data 

No data No data 

 

  



   Q TEST IN META-ANALYSIS 

 

Mid-Western Educational Researcher • Volume 28, Issue 1 

 

67 

Table 4 (continued) 

Guidelines for Using the Q Test (= .05) 

 Effect on    Effect on 1  

Factor 𝜃𝑔 𝜃𝑧 𝜃𝑟  𝜃𝑔 𝜃𝑧 𝜃𝑟 

  

 Observations in primary 

studies:  normal, equal 

variances 

 ESs: non-normal    

No data No data No data  No data No data No data 

 Observations in primary 

studies:  normal, unequal 

variances 
 ESs: non-normal    

No data No data No data  No data No data No data 

Measurement Error Limited or no 

data 

Minimal effect Some inflation  

( ̂= > .06) 

even when 

normality 

satisfied and K 

> 50 and N > 

100 

 No data Moderate 

power  

(1= .61) 

Moderate 

power 

(1= .61) 

Range Restriction Limited or no 

data 

Some effect Inflating effect  No data Moderate 

power  

(1= .73) but 

role of K and

kN unclear 

Good power (

1= .80) but 

may be partly 

due to inflated 

Type I error 

rate 

Note.1.for 𝜃̂𝑧and 𝜃̂𝑟 this implies a bivariate normal distribution with equal variances; 2. for 𝜃̂𝑧and 𝜃̂𝑟this implies a bivariate normal distribution with unequal 

variances);  𝜃̂𝑔=standardized effect size, 𝜃̂𝑧= Fisher’s r-to-z transformed correlation, 𝜃̂𝑟= untransformed correlation. Limited or no data means that there were few 

(e.g., 3) or no cases. 

 



Q TEST IN META-ANALYSIS 

Mid-Western Educational Researcher • Volume 28, Issue 1  

 

68 

Recommendations for Practice 

 

Of course, our findings are limited by several factors including non-random sampling of studies 

in our meta-analysis, and coding choices of possible moderator variables. Still, we think our 

results suggest three recommendations for meta-analysts planning to use the Q test. First, the 

Fisher r-to-z transformation is preferred as an effect size. This effect size was associated with the 

best control of Type I error rates of Q and the greatest power for the largest number of 

conditions. The use of untransformed correlations as effect sizes is not recommended as these 

were consistently associated with inflated Type I error rates for Q. 

 

Second, the Q test based on r-to-z effect sizes can generally be used with as few as 10 studies 

and primary study sample sizes of 30 or less and still show excellent power for detecting 

heterogeneity unless the data show a range restriction or measurement error. Third, meta-analysts 

need to pay careful attention to the possibility of range restriction and measurement error in 

primary study data, something that published meta-analyses do not always do. Coding variables 

that capture these characteristics in primary studies and including these variables in the meta-

analysis is recommended. 

 

These recommendations do not offer detailed guidance for exactly when the Q test can be used 

with confidence and when it should not be used, which is not surprising given the somewhat 

sparse state of the Monte Carlo literature for Q. However, the recommendations inform the 

routine use of this meta-analytic test in ways that should enhance the validity of test-based 

inferences. Moreover, our findings suggest that other meta-analytic tests or statistics such as 

𝐼2 (Huedo-Medina et al., 2006) for which a literature of computer simulation findings exists can 

usefully be summarized using a quantitative synthesis.  
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